A new approach to weighting and inference in sample surveys
Jean-François Beaumont
Biometrika, 2008, vol. 95, issue 3, 539-553
Abstract:
The validity of design-based inference is not dependent on any model assumption. However, it is well known that estimators derived through design-based theory may be inefficient for the estimation of population totals when the design weights are weakly related to the variables of interest and have widely dispersed values. We propose estimators that have the potential to improve the efficiency of any estimator derived under the design-based theory. Our main focus is limited to the improvement of the Horvitz--Thompson estimator, but we also discuss the extension to calibration estimators. The new estimators are obtained by smoothing design or calibration weights using an appropriate model. Our approach to inference requires the modelling of only one variable, the weight, and it leads to a single set of smoothed weights in multipurpose surveys. This is to be contrasted with other model-based approaches, such as the prediction approach, in which it is necessary to postulate and validate a model for each variable of interest leading potentially to variable-specific sets of weights. Our proposed approach is first justified theoretically and then evaluated through a simulation study. Copyright 2008, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn028 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:3:p:539-553
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().