Extended Bayesian information criteria for model selection with large model spaces
Jiahua Chen and
Zehua Chen
Biometrika, 2008, vol. 95, issue 3, 759-771
Abstract:
The ordinary Bayesian information criterion is too liberal for model selection when the model space is large. In this paper, we re-examine the Bayesian paradigm for model selection and propose an extended family of Bayesian information criteria, which take into account both the number of unknown parameters and the complexity of the model space. Their consistency is established, in particular allowing the number of covariates to increase to infinity with the sample size. Their performance in various situations is evaluated by simulation studies. It is demonstrated that the extended Bayesian information criteria incur a small loss in the positive selection rate but tightly control the false discovery rate, a desirable property in many applications. The extended Bayesian information criteria are extremely useful for variable selection in problems with a moderate sample size but with a huge number of covariates, especially in genome-wide association studies, which are now an active area in genetics research. Copyright 2008, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (222)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn034 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:3:p:759-771
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().