EconPapers    
Economics at your fingertips  
 

A note on conditional aic for linear mixed-effects models

Hua Liang, Hulin Wu and Guohua Zou

Biometrika, 2008, vol. 95, issue 3, 773-778

Abstract: The conventional model selection criterion, the Akaike information criterion, aic , has been applied to choose candidate models in mixed-effects models by the consideration of marginal likelihood. Vaida & Blanchard (2005) demonstrated that such a marginal aic and its small sample correction are inappropriate when the research focus is on clusters. Correspondingly, these authors suggested the use of conditional aic . Their conditional aic is derived under the assumption that the variance-covariance matrix or scaled variance-covariance matrix of random effects is known. This note provides a general conditional aic but without these strong assumptions. Simulation studies show that the proposed method is promising. Copyright 2008, Oxford University Press.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn023 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:3:p:773-778

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:773-778