EconPapers    
Economics at your fingertips  
 

Covariance reducing models: An alternative to spectral modelling of covariance matrices

R. Dennis Cook and Liliana Forzani

Biometrika, 2008, vol. 95, issue 4, 799-812

Abstract: We introduce covariance reducing models for studying the sample covariance matrices of a random vector observed in different populations. The models are based on reducing the sample covariance matrices to an informational core that is sufficient to characterize the variance heterogeneity among the populations. They possess useful equivariance properties and provide a clear alternative to spectral models for covariance matrices. Copyright 2008, Oxford University Press.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn052 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:4:p:799-812

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:799-812