Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data
Yi Li,
Ross L. Prentice and
Xihong Lin
Biometrika, 2008, vol. 95, issue 4, 947-960
Abstract:
We consider a class of semiparametric normal transformation models for right-censored bivariate failure times. Nonparametric hazard rate models are transformed to a standard normal model and a joint normal distribution is assumed for the bivariate vector of transformed variates. A semiparametric maximum likelihood estimation procedure is developed for estimating the marginal survival distribution and the pairwise correlation parameters. This produces an efficient estimator of the correlation parameter of the semiparametric normal transformation model, which characterizes the dependence of bivariate survival outcomes. In addition, a simple positive-mass-redistribution algorithm can be used to implement the estimation procedures. Since the likelihood function involves infinite-dimensional parameters, empirical process theory is utilized to study the asymptotic properties of the proposed estimators, which are shown to be consistent, asymptotically normal and semiparametric efficient. A simple estimator for the variance of the estimates is derived. Finite sample performance is evaluated via extensive simulations. Copyright 2008, Oxford University Press.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn049 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:95:y:2008:i:4:p:947-960
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().