EconPapers    
Economics at your fingertips  
 

Wilcoxon-type generalized Bayesian information criterion

Lan Wang

Biometrika, 2009, vol. 96, issue 1, 163-173

Abstract: We develop a generalized Bayesian information criterion for regression model selection. The new criterion relaxes the usually strong distributional assumption associated with Schwarz's BIC by adopting a Wilcoxon-type dispersion function and appropriately adjusting the penalty term. We establish that the Wilcoxon-type generalized BIC preserves the consistency of Schwarz's BIC without the need to assume a parametric likelihood. We also show that it outperforms Schwarz's BIC with heavier-tailed data in the sense that asymptotically it can yield substantially smaller L-sub-2 risk. On the other hand, when the data are normally distributed, both criteria have similar L-sub-2 risk. The new criterion function is convex and can be conveniently computed using existing statistical software. Our proposal provides a flexible yet highly efficient alternative to Schwarz's BIC; at the same time, it broadens the scope of Wilcoxon inference, which has played a fundamental role in classical nonparametric analysis. Copyright 2009, Oxford University Press.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn060 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:1:p:163-173

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:96:y:2009:i:1:p:163-173