A note on semiparametric efficient inference for two-stage outcome-dependent sampling with a continuous outcome
Rui Song,
Haibo Zhou and
Michael R. Kosorok
Biometrika, 2009, vol. 96, issue 1, 221-228
Abstract:
Outcome-dependent sampling designs have been shown to be a cost-effective way to enhance study efficiency. We show that the outcome-dependent sampling design with a continuous outcome can be viewed as an extension of the two-stage case-control designs to the continuous-outcome case. We further show that the two-stage outcome-dependent sampling has a natural link with the missing-data and biased-sampling frameworks. Through the use of semiparametric inference and missing-data techniques, we show that a certain semiparametric maximum-likelihood estimator is computationally convenient and achieves the semiparametric efficient information bound. We demonstrate this both theoretically and through simulation. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn073 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:1:p:221-228
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().