Partial and latent ignorability in missing-data problems
Ofer Harel and
Joseph L. Schafer
Biometrika, 2009, vol. 96, issue 1, 37-50
Abstract:
When an assumption of missing at random is untenable, it becomes necessary to model missing-data indicators, which carry information about the parameters of the complete-data population. Within a given application, however, researchers may believe that some aspects of missingness are ignorable but others are not. We argue that there are two different ways to formalize the notion that only part of the missingness is ignorable. These approaches correspond to assumptions that we call partially missing at random and latently missing at random. We explain these concepts and apply them in a latent-class analysis of survey questions with item nonresponse. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asn069 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:1:p:37-50
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().