Mixtures of Polya trees for flexible spatial frailty survival modelling
Luping Zhao,
Timothy E. Hanson and
Bradley P. Carlin
Biometrika, 2009, vol. 96, issue 2, 263-276
Abstract:
Mixtures of Polya trees offer a very flexible nonparametric approach for modelling time-to-event data. Many such settings also feature spatial association that requires further sophistication, either at the point level or at the lattice level. In this paper, we combine these two aspects within three competing survival models, obtaining a data analytic approach that remains computationally feasible in a fully hierarchical Bayesian framework using Markov chain Monte Carlo methods. We illustrate our proposed methods with an analysis of spatially oriented breast cancer survival data from the Surveillance, Epidemiology and End Results program of the National Cancer Institute. Our results indicate appreciable advantages for our approach over competing methods that impose unrealistic parametric assumptions, ignore spatial association or both. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp014 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:2:p:263-276
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().