Gamma frailty transformation models for multivariate survival times
Donglin Zeng,
Qingxia Chen and
Joseph G. Ibrahim
Biometrika, 2009, vol. 96, issue 2, 277-291
Abstract:
We propose a class of transformation models for multivariate failure times. The class of transformation models generalize the usual gamma frailty model and yields a marginally linear transformation model for each failure time. Nonparametric maximum likelihood estimation is used for inference. The maximum likelihood estimators for the regression coefficients are shown to be consistent and asymptotically normal, and their asymptotic variances attain the semiparametric efficiency bound. Simulation studies show that the proposed estimation procedure provides asymptotically efficient estimates and yields good inferential properties for small sample sizes. The method is illustrated using data from a cardiovascular study. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp008 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:2:p:277-291
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().