Hierarchically penalized Cox regression with grouped variables
S. Wang,
B. Nan,
N. Zhu and
J. Zhu
Biometrika, 2009, vol. 96, issue 2, 307-322
Abstract:
In many biological and other scientific applications, predictors are often naturally grouped. For example, in biological applications, assayed genes or proteins are grouped by biological roles or biological pathways. When studying the dependence of survival outcome on these grouped predictors, it is desirable to select variables at both the group level and the within-group level. In this article, we develop a new method to address the group variable selection problem in the Cox proportional hazards model. Our method not only effectively removes unimportant groups, but also maintains the flexibility of selecting variables within the identified groups. We also show that the new method offers the potential for achieving the asymptotic oracle property. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp016 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:2:p:307-322
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().