Marginal analysis of panel counts through estimating functions
X. Joan Hu,
Stephen W. Lagakos and
Richard A. Lockhart
Biometrika, 2009, vol. 96, issue 2, 445-456
Abstract:
We develop nonparametric estimation procedures for the marginal mean function of a counting process based on periodic observations, using two types of self-consistent estimating equations. The first is derived from the likelihood studied by Wellner & Zhang (2000), assuming a Poisson counting process. It gives a nondecreasing estimator, which equals the nonparametric maximum likelihood estimator of Wellner & Zhang and is consistent without the Poisson assumption. Motivated by the construction of parametric generalized estimating equations, the second type is a set of data-adaptive quasi-score functions, which are likelihood estimating functions under a mixed-Poisson assumption. We evaluate the procedures using simulation, and illustrate them with the data from a bladder cancer study. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp010 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:2:p:445-456
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().