EconPapers    
Economics at your fingertips  
 

Objective Bayesian model selection in Gaussian graphical models

C. M. Carvalho and J. G. Scott

Biometrika, 2009, vol. 96, issue 3, 497-512

Abstract: This paper presents a default model-selection procedure for Gaussian graphical models that involves two new developments. First, we develop a default version of the hyper-inverse Wishart prior for restricted covariance matrices, called the hyper-inverse Wishart g-prior, and show how it corresponds to the implied fractional prior for selecting a graph using fractional Bayes factors. Second, we apply a class of priors that automatically handles the problem of multiple hypothesis testing. We demonstrate our methods on a variety of simulated examples, concluding with a real example analyzing covariation in mutual-fund returns. These studies reveal that the combined use of a multiplicity-correction prior on graphs and fractional Bayes factors for computing marginal likelihoods yields better performance than existing Bayesian methods. Copyright 2009, Oxford University Press.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp017 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:3:p:497-512

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:96:y:2009:i:3:p:497-512