Empirical Bayes estimation for additive hazards regression models
Debajyoti Sinha,
M. Brent McHenry,
Stuart R. Lipsitz and
Malay Ghosh
Biometrika, 2009, vol. 96, issue 3, 545-558
Abstract:
We develop a novel empirical Bayesian framework for the semiparametric additive hazards regression model. The integrated likelihood, obtained by integration over the unknown prior of the nonparametric baseline cumulative hazard, can be maximized using standard statistical software. Unlike the corresponding full Bayes method, our empirical Bayes estimators of regression parameters, survival curves and their corresponding standard errors have easily computed closed-form expressions and require no elicitation of hyperparameters of the prior. The method guarantees a monotone estimator of the survival function and accommodates time-varying regression coefficients and covariates. To facilitate frequentist-type inference based on large-sample approximation, we present the asymptotic properties of the semiparametric empirical Bayes estimates. We illustrate the implementation and advantages of our methodology with a reanalysis of a survival dataset and a simulation study. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp024 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:3:p:545-558
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().