Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data
Lynn M. Johnson and
Robert L. Strawderman
Biometrika, 2009, vol. 96, issue 3, 577-590
Abstract:
This paper extends the induced smoothing procedure of Brown & Wang (2006) for the semiparametric accelerated failure time model to the case of clustered failure time data. The resulting procedure permits fast and accurate computation of regression parameter estimates and standard errors using simple and widely available numerical methods, such as the Newton--Raphson algorithm. The regression parameter estimates are shown to be strongly consistent and asymptotically normal; in addition, we prove that the asymptotic distribution of the smoothed estimator coincides with that obtained without the use of smoothing. This establishes a key claim of Brown & Wang (2006) for the case of independent failure time data and also extends such results to the case of clustered data. Simulation results show that these smoothed estimates perform as well as those obtained using the best available methods at a fraction of the computational cost. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp025 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:3:p:577-590
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().