Bayesian analysis of matrix normal graphical models
Hao Wang and
Mike West
Biometrika, 2009, vol. 96, issue 4, 821-834
Abstract:
We present Bayesian analyses of matrix-variate normal data with conditional independencies induced by graphical model structuring of the characterizing covariance matrix parameters. This framework of matrix normal graphical models includes prior specifications, posterior computation using Markov chain Monte Carlo methods, evaluation of graphical model uncertainty and model structure search. Extensions to matrix-variate time series embed matrix normal graphs in dynamic models. Examples highlight questions of graphical model uncertainty, search and comparison in matrix data contexts. These models may be applied in a number of areas of multivariate analysis, time series and also spatial modelling. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp049 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:4:p:821-834
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().