EconPapers    
Economics at your fingertips  
 

Bayesian lasso regression

Chris Hans

Biometrika, 2009, vol. 96, issue 4, 835-845

Abstract: The lasso estimate for linear regression corresponds to a posterior mode when independent, double-exponential prior distributions are placed on the regression coefficients. This paper introduces new aspects of the broader Bayesian treatment of lasso regression. A direct characterization of the regression coefficients' posterior distribution is provided, and computation and inference under this characterization is shown to be straightforward. Emphasis is placed on point estimation using the posterior mean, which facilitates prediction of future observations via the posterior predictive distribution. It is shown that the standard lasso prediction method does not necessarily agree with model-based, Bayesian predictions. A new Gibbs sampler for Bayesian lasso regression is introduced. Copyright 2009, Oxford University Press.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (47)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp047 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:4:p:835-845

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-04-17
Handle: RePEc:oup:biomet:v:96:y:2009:i:4:p:835-845