Nonparametric estimation of the probability of illness in the illness-death model under cross-sectional sampling
M. Mandel and
R. Fluss
Biometrika, 2009, vol. 96, issue 4, 861-872
Abstract:
Cross-sectional sampling is an attractive design that saves resources but results in biased data. For proper inference, one should first discover the bias function and then weigh observations appropriately. We consider cross-sectioning of the illness-death model with the aim of estimating the probability of visiting the illness state before death. We develop simple consistent and asymptotically normal estimators under various assumptions on the model and data collection and, in particular, compare designs with and without a follow-up. These designs are common in surveillance of hospital acquired infections, but estimators currently in use do not properly correct the bias. Copyright 2009, Oxford University Press.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp046 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:96:y:2009:i:4:p:861-872
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().