A semiparametric random effects model for multivariate competing risks data
Thomas H. Scheike,
Yanqing Sun,
Mei-Jie Zhang and
Tina Kold Jensen
Biometrika, 2010, vol. 97, issue 1, 133-145
Abstract:
We propose a semiparametric random effects model for multivariate competing risks data when the failures of a particular type are of interest. Under this model, the marginal cumulative incidence functions follow a generalized semiparametric additive model. The associations between the cause-specific failure times can be studied through dependence parameters of copula functions that are allowed to depend on cluster-level covariates. A cross-odds ratio-type measure is proposed to describe the associations between cause-specific failure times, and its relationship to the dependence parameters is explored. We develop a two-stage estimation procedure where the marginal models are estimated in the first stage and the dependence parameters are estimated in the second stage. The large sample properties of the proposed estimators are derived. The proposed procedures are applied to Danish twin data to model the cumulative incidence for the age of natural menopause and to investigate the association in the onset of natural menopause between monozygotic and dizygotic twins. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp082 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:1:p:133-145
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().