EconPapers    
Economics at your fingertips  
 

On Bayesian testimation and its application to wavelet thresholding

Felix Abramovich, Vadim Grinshtein, Athanasia Petsa and Theofanis Sapatinas

Biometrika, 2010, vol. 97, issue 1, 181-198

Abstract: We consider the problem of estimating the unknown response function in the Gaussian white noise model. We first utilize the recently developed Bayesian maximum a posteriori testimation procedure of Abramovich et al. (2007) for recovering an unknown high-dimensional Gaussian mean vector. The existing results for its upper error bounds over various sparse l p -balls are extended to more general cases. We show that, for a properly chosen prior on the number of nonzero entries of the mean vector, the corresponding adaptive estimator is asymptotically minimax in a wide range of sparse and dense l p -balls. The proposed procedure is then applied in a wavelet context to derive adaptive global and level-wise wavelet estimators of the unknown response function in the Gaussian white noise model. These estimators are then proven to be, respectively, asymptotically near-minimax and minimax in a wide range of Besov balls. These results are also extended to the estimation of derivatives of the response function. Simulated examples are conducted to illustrate the performance of the proposed level-wise wavelet estimator in finite sample situations, and to compare it with several existing counterparts. Copyright 2010, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp080 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:1:p:181-198

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:97:y:2010:i:1:p:181-198