A note on the sensitivity to assumptions of a generalized linear mixed model
D. R. Cox and
M. Y. Wong
Biometrika, 2010, vol. 97, issue 1, 209-214
Abstract:
A simple case of Poisson regression is used to study the potential gain in efficiency from using a mixed model representation. Possible systematic errors arising from misspecification of the random terms in the model are examined. It is shown in particular that for a special but realistic problem, appreciable bias may arise from misspecification of a random component. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asp083 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:1:p:209-214
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().