Dimension reduction for non-elliptically distributed predictors: second-order methods
Yuexiao Dong and
Bing Li
Biometrika, 2010, vol. 97, issue 2, 279-294
Abstract:
Many classical dimension reduction methods, especially those based on inverse conditional moments, require the predictors to have elliptical distributions, or at least to satisfy a linearity condition. Such conditions, however, are too strong for some applications. Li and Dong (2009) introduced the notion of the central solution space and used it to modify first-order methods, such as sliced inverse regression, so that they no longer rely on these conditions. In this paper we generalize this idea to second-order methods, such as sliced average variance estimation and directional regression. In doing so we demonstrate that the central solution space is a versatile framework: we can use it to modify essentially all inverse conditional moment-based methods to relax the distributional assumption on the predictors. Simulation studies and an application show a substantial improvement of the modified methods over their classical counterparts. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq016 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:2:p:279-294
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().