A theory for testing hypotheses under covariate-adaptive randomization
Jun Shao,
Xinxin Yu and
Bob Zhong
Biometrika, 2010, vol. 97, issue 2, 347-360
Abstract:
The covariate-adaptive randomization method was proposed for clinical trials long ago but little theoretical work has been done for statistical inference associated with it. Practitioners often apply test procedures available for simple randomization, which is controversial since procedures valid under simple randomization may not be valid under other randomization schemes. In this paper, we provide some theoretical results for testing hypotheses after covariate-adaptive randomization. We show that one way to obtain a valid test procedure is to use a correct model between outcomes and covariates, including those used in randomization. We also show that the simple two sample t-test, without using any covariate, is conservative under covariate-adaptive biased coin randomization in terms of its Type I error, and that a valid bootstrap t-test can be constructed. The powers of several tests are examined theoretically and empirically. Our study provides guidance for applications and sheds light on further research in this area. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq014 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:2:p:347-360
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().