EconPapers    
Economics at your fingertips  
 

Estimating linear dependence between nonstationary time series using the locally stationary wavelet model

J. Sanderson, P. Fryzlewicz and M. W. Jones

Biometrika, 2010, vol. 97, issue 2, 435-446

Abstract: Large volumes of neuroscience data comprise multiple, nonstationary electrophysiological or neuroimaging time series recorded from different brain regions. Accurately estimating the dependence between such neural time series is critical, since changes in the dependence structure are presumed to reflect functional interactions between neuronal populations. We propose a new dependence measure, derived from a bivariate locally stationary wavelet time series model. Since wavelets are localized in both time and scale, this approach leads to a natural, local and multi-scale estimate of nonstationary dependence. Our methodology is illustrated by application to a simulated example, and to electrophysiological data relating to interactions between the rat hippocampus and prefrontal cortex during working memory and decision making. Copyright 2010, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq007 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:2:p:435-446

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:435-446