The horseshoe estimator for sparse signals
Carlos M. Carvalho,
Nicholas G. Polson and
James G. Scott
Biometrika, 2010, vol. 97, issue 2, 465-480
Abstract:
This paper proposes a new approach to sparsity, called the horseshoe estimator, which arises from a prior based on multivariate-normal scale mixtures. We describe the estimator's advantages over existing approaches, including its robustness, adaptivity to different sparsity patterns and analytical tractability. We prove two theorems: one that characterizes the horseshoe estimator's tail robustness and the other that demonstrates a super-efficient rate of convergence to the correct estimate of the sampling density in sparse situations. Finally, using both real and simulated data, we show that the horseshoe estimator corresponds quite closely to the answers obtained by Bayesian model averaging under a point-mass mixture prior. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (213)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq017 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:2:p:465-480
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().