EconPapers    
Economics at your fingertips  
 

Objective Bayes and conditional inference in exponential families

Thomas J. Diciccio and G. Alastair Young

Biometrika, 2010, vol. 97, issue 2, 497-504

Abstract: Objective Bayes methodology is considered for conditional frequentist inference about a canonical parameter in a multi-parameter exponential family. A condition is derived under which posterior Bayes quantiles match the conditional frequentist coverage to a higher-order approximation in terms of the sample size. This condition is on the model, not on the prior, and it ensures that any first-order probability matching prior in the unconditional sense automatically yields higher-order conditional probability matching. Objective Bayes methods are compared to parametric bootstrap and analytic methods for higher-order conditional frequentist inference. Copyright 2010, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq002 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:2:p:497-504

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:97:y:2010:i:2:p:497-504