A new approach to Cholesky-based covariance regularization in high dimensions
Adam J. Rothman,
Elizaveta Levina and
Ji Zhu
Biometrika, 2010, vol. 97, issue 3, 539-550
Abstract:
In this paper we propose a new regression interpretation of the Cholesky factor of the covariance matrix, as opposed to the well-known regression interpretation of the Cholesky factor of the inverse covariance, which leads to a new class of regularized covariance estimators suitable for high-dimensional problems. Regularizing the Cholesky factor of the covariance via this regression interpretation always results in a positive definite estimator. In particular, one can obtain a positive definite banded estimator of the covariance matrix at the same computational cost as the popular banded estimator of Bickel & Levina (2008b), which is not guaranteed to be positive definite. We also establish theoretical connections between banding Cholesky factors of the covariance matrix and its inverse and constrained maximum likelihood estimation under the banding constraint, and compare the numerical performance of several methods in simulations and on a sonar data example. Copyright 2010, Oxford University Press.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq022 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:3:p:539-550
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().