EconPapers    
Economics at your fingertips  
 

A note on overadjustment in inverse probability weighted estimation

Andrea Rotnitzky, Lingling Li and Xiaochun Li

Biometrika, 2010, vol. 97, issue 4, 997-1001

Abstract: Standardized means, commonly used in observational studies in epidemiology to adjust for potential confounders, are equal to inverse probability weighted means with inverse weights equal to the empirical propensity scores. More refined standardization corresponds with empirical propensity scores computed under more flexible models. Unnecessary standardization induces efficiency loss. However, according to the theory of inverse probability weighted estimation, propensity scores estimated under more flexible models induce improvement in the precision of inverse probability weighted means. This apparent contradiction is clarified by explicitly stating the assumptions under which the improvement in precision is attained. Copyright 2010, Oxford University Press.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq049 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:97:y:2010:i:4:p:997-1001

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:997-1001