EconPapers    
Economics at your fingertips  
 

Parametric fractional imputation for missing data analysis

Jae Kwang Kim

Biometrika, 2011, vol. 98, issue 1, 119-132

Abstract: Parametric fractional imputation is proposed as a general tool for missing data analysis. Using fractional weights, the observed likelihood can be approximated by the weighted mean of the imputed data likelihood. Computational efficiency can be achieved using the idea of importance sampling and calibration weighting. The proposed imputation method provides efficient parameter estimates for the model parameters specified in the imputation model and also provides reasonable estimates for parameters that are not part of the imputation model. Variance estimation is discussed and results from a limited simulation study are presented. Copyright 2011, Oxford University Press.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq073 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:1:p:119-132

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:119-132