EconPapers    
Economics at your fingertips  
 

A unified framework for studying parameter identifiability and estimation in biased sampling designs

Hua Yun Chen

Biometrika, 2011, vol. 98, issue 1, 163-175

Abstract: Based on the odds ratio representation of a joint density, we propose a unified framework to study parameter identifiability in biased sampling designs. It is shown that most of these designs encountered in practice can be reformulated within the proposed framework and, as a result, the question of parameter identifiability can be largely clarified. Estimation of the identifiable parameters is considered and traditional results on the equivalence of the prospective and retrospective likelihoods are extended. Information contained in data on certain identifiable parameters is often very limited. Such parameters can be poorly estimated by the likelihood approach with practically attainable sample sizes, which can substantially affect the estimates of parameters of primary interest. A partially penalized likelihood approach is proposed to address this. Simulation results suggest that the proposed approach has good performance. Copyright 2011, Oxford University Press.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq059 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:1:p:163-175

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:98:y:2011:i:1:p:163-175