Nonparametric estimation for length-biased and right-censored data
Chiung-Yu Huang and
Jing Qin
Biometrika, 2011, vol. 98, issue 1, 177-186
Abstract:
This paper considers survival data arising from length-biased sampling, where the survival times are left truncated by uniformly distributed random truncation times. We propose a nonparametric estimator that incorporates the information about the length-biased sampling scheme. The new estimator retains the simplicity of the truncation product-limit estimator with a closed-form expression, and has a small efficiency loss compared with the nonparametric maximum likelihood estimator, which requires an iterative algorithm. Moreover, the asymptotic variance of the proposed estimator has a closed form, and a variance estimator is easily obtained by plug-in methods. Numerical simulation studies with practical sample sizes are conducted to compare the performance of the proposed method with its competitors. A data analysis of the Canadian Study of Health and Aging is conducted to illustrate the methods and theory. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq069 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:1:p:177-186
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().