The effect of correlation in false discovery rate estimation
Armin Schwartzman and
Xihong Lin
Biometrika, 2011, vol. 98, issue 1, 199-214
Abstract:
The objective of this paper is to quantify the effect of correlation in false discovery rate analysis. Specifically, we derive approximations for the mean, variance, distribution and quantiles of the standard false discovery rate estimator for arbitrarily correlated data. This is achieved using a negative binomial model for the number of false discoveries, where the parameters are found empirically from the data. We show that correlation may increase the bias and variance of the estimator substantially with respect to the independent case, and that in some cases, such as an exchangeable correlation structure, the estimator fails to be consistent as the number of tests becomes large. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asq075 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:1:p:199-214
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().