Bayesian influence analysis: a geometric approach
Hongtu Zhu,
Joseph G. Ibrahim and
Niansheng Tang
Biometrika, 2011, vol. 98, issue 2, 307-323
Abstract:
In this paper we develop a general framework of Bayesian influence analysis for assessing various perturbation schemes to the data, the prior and the sampling distribution for a class of statistical models. We introduce a perturbation model to characterize these various perturbation schemes. We develop a geometric framework, called the Bayesian perturbation manifold, and use its associated geometric quantities including the metric tensor and geodesic to characterize the intrinsic structure of the perturbation model. We develop intrinsic influence measures and local influence measures based on the Bayesian perturbation manifold to quantify the effect of various perturbations to statistical models. Theoretical and numerical examples are examined to highlight the broad spectrum of applications of this local influence method in a formal Bayesian analysis. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr009 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:2:p:307-323
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().