Testing against a high-dimensional alternative in the generalized linear model: asymptotic type I error control
Jelle J. Goeman,
Hans C. van Houwelingen and
Livio Finos
Biometrika, 2011, vol. 98, issue 2, 381-390
Abstract:
Testing a low-dimensional null hypothesis against a high-dimensional alternative in a generalized linear model may lead to a test statistic that is a quadratic form in the residuals under the null model. Using asymptotic arguments, we show that the distribution of such a test statistic can be approximated by a ratio of quadratic forms in normal variables, for which algorithms are readily available. For generalized linear models, the asymptotic distribution shows good control of type I error for moderate to small samples, even when the number of covariates in the model far exceeds the sample size. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr016 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:2:p:381-390
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().