EconPapers    
Economics at your fingertips  
 

Optimal design for additive partially nonlinear models

S. Biedermann, H. Dette and D. C. Woods

Biometrika, 2011, vol. 98, issue 2, 449-458

Abstract: We develop optimal design theory for additive partially nonlinear regression models, showing that Bayesian and standardized maximin D-optimal designs can be found as the products of the corresponding optimal designs in one dimension. A sufficient condition under which analogous results hold for D s -optimality is derived to accommodate situations in which only a subset of the model parameters is of interest. To facilitate prediction of the response at unobserved locations, we prove similar results for Q-optimality in the class of all product designs. The usefulness of this approach is demonstrated through an application from the automotive industry, where optimal designs for least squares regression splines are determined and compared with designs commonly used in practice. Copyright 2011, Oxford University Press.

Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr001 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:2:p:449-458

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:98:y:2011:i:2:p:449-458