Bayesian isotonic density regression
Lianming Wang and
David B. Dunson
Biometrika, 2011, vol. 98, issue 3, 537-551
Abstract:
Density regression models allow the conditional distribution of the response given predictors to change flexibly over the predictor space. Such models are much more flexible than nonparametric mean regression models with nonparametric residual distributions, and are well supported in many applications. A rich variety of Bayesian methods have been proposed for density regression, but it is not clear whether such priors have full support so that any true data-generating model can be accurately approximated. This article develops a new class of density regression models that incorporate stochastic-ordering constraints which are natural when a response tends to increase or decrease monotonely with a predictor. Theory is developed showing large support. Methods are developed for hypothesis testing, with posterior computation relying on a simple Gibbs sampler. Frequentist properties are illustrated in a simulation study, and an epidemiology application is considered. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr025 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:3:p:537-551
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().