Efficient restricted estimators for conditional mean models with missing data
Z. Tan
Biometrika, 2011, vol. 98, issue 3, 663-684
Abstract:
Consider a conditional mean model with missing data on the response or explanatory variables due to two-phase sampling or nonresponse. Robins et al. (1994) introduced a class of augmented inverse-probability-weighted estimators, depending on a vector of functions of explanatory variables and a vector of functions of coarsened data. Tsiatis (2006) studied two classes of restricted estimators, class 1 with both vectors restricted to finite-dimensional linear subspaces and class 2 with the first vector of functions restricted to a finite-dimensional linear subspace. We introduce a third class of restricted estimators, class 3, with the second vector of functions restricted to a finite-dimensional subspace. We derive a new estimator, which is asymptotically optimal in class 1, by the methods of nonparametric and empirical likelihood. We propose a hybrid strategy to obtain estimators that are asymptotically optimal in class 1 and locally optimal in class 2 or class 3. The advantages of the hybrid, likelihood estimator based on classes 1 and 3 are shown in a simulation study and a real-data example. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr007 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:3:p:663-684
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().