Non-Gaussian spatiotemporal modelling through scale mixing
Thaís C. O. Fonseca and
Mark Steel
Biometrika, 2011, vol. 98, issue 4, 761-774
Abstract:
We construct non-Gaussian processes that vary continuously in space and time with nonseparable covariance functions. Starting from a general and flexible way of constructing valid nonseparable covariance functions through mixing over separable covariance functions, the resulting models are generalized by allowing for outliers as well as regions with larger variances. We induce this through scale mixing with separate positive-valued processes. Smooth mixing processes are applied to the underlying correlated processes in space and in time, thus leading to regions in space and time of increased spread. An uncorrelated mixing process on the nugget effect accommodates outliers. Posterior and predictive Bayesian inference with these models is implemented through a Markov chain Monte Carlo sampler. An application to temperature data in the Basque country illustrates the potential of this model in the identification of outliers and regions with inflated variance, and shows that this improves the predictive performance. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr047 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:4:p:761-774
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().