Forward adaptive banding for estimating large covariance matrices
Chenlei Leng and
Bo Li
Biometrika, 2011, vol. 98, issue 4, 821-830
Abstract:
We propose a simple forward adaptive banding method for estimating large covariance matrices using the modified Cholesky decomposition. This approach requires the fitting of a prespecified set of models due to the adaptive banding structure and can be efficiently implemented. Aside from its computational attractiveness, we propose a novel Bayes information criterion that gives consistent model selection for estimating high dimensional covariance matrices. The method compares favourably to its competitors in simulation study. Copyright 2011, Oxford University Press.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr045 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:98:y:2011:i:4:p:821-830
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().