EconPapers    
Economics at your fingertips  
 

Estimating treatment effects with treatment switching via semicompeting risks models: an application to a colorectal cancer study

Donglin Zeng, Qingxia Chen, Ming-Hui Chen and Joseph G. Ibrahim

Biometrika, 2012, vol. 99, issue 1, 167-184

Abstract: Treatment switching is a frequent occurrence in clinical trials, where, during the course of the trial, patients who fail on the control treatment may change to the experimental treatment. Analysing the data without accounting for switching yields highly biased and inefficient estimates of the treatment effect. In this paper, we propose a novel class of semiparametric semicompeting risks transition survival models to accommodate treatment switches. Theoretical properties of the proposed model are examined and an efficient expectation-maximization algorithm is derived for obtaining the maximum likelihood estimates. Simulation studies are conducted to demonstrate the superiority of the model compared with the intent-to-treat analysis and other methods proposed in the literature. The proposed method is applied to data from a colorectal cancer clinical trial. Copyright 2012, Oxford University Press.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asr062 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:1:p:167-184

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:99:y:2012:i:1:p:167-184