Likelihood approaches for the invariant density ratio model with biased-sampling data
Yu Shen,
Jing Ning and
Jing Qin
Biometrika, 2012, vol. 99, issue 2, 363-378
Abstract:
The full likelihood approach in statistical analysis is regarded as the most efficient means for estimation and inference. For complex length-biased failure time data, computational algorithms and theoretical properties are not readily available, especially when a likelihood function involves infinite-dimensional parameters. Relying on the invariance property of length-biased failure time data under the semiparametric density ratio model, we present two likelihood approaches for the estimation and assessment of the difference between two survival distributions. The most efficient maximum likelihood estimators are obtained by the em algorithm and profile likelihood. We also provide a simple numerical method for estimation and inference based on conditional likelihood, which can be generalized to k-arm settings. Unlike conventional survival data, the mean of the population failure times can be consistently estimated given right-censored length-biased data under mild regularity conditions. To check the semiparametric density ratio model assumption, we use a test statistic based on the area between two survival distributions. Simulation studies confirm that the full likelihood estimators are more efficient than the conditional likelihood estimators. We analyse an epidemiological study to illustrate the proposed methods. Copyright 2012, Oxford University Press.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass008 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:2:p:363-378
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().