EconPapers    
Economics at your fingertips  
 

Empirical bootstrap bias correction and estimation of prediction mean square error in small area estimation

D. Pfeffermann and S. Correa

Biometrika, 2012, vol. 99, issue 2, 457-472

Abstract: We develop a method for bias correction, which models the error of the target estimator as a function of the corresponding estimator obtained from bootstrap samples, and the original estimators and bootstrap estimators of the parameters governing the model fitted to the sample data. This is achieved by considering a number of plausible parameter values, generating a pseudo original sample for each parameter and bootstrap samples for each such sample, and then searching for an appropriate functional relationship. Under certain conditions, the procedure also permits estimation of the mean square error of the bias corrected estimator. The method is applied for estimating the prediction mean square error in small area estimation of proportions under a generalized mixed model. Empirical comparisons with jackknife and bootstrap methods are presented. Copyright 2012, Oxford University Press.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass010 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:2:p:457-472

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:457-472