Nonparametric incidence estimation from prevalent cohort survival data
Marco Carone,
Masoud Asgharian and
Mei-Cheng Wang
Biometrika, 2012, vol. 99, issue 3, 599-613
Abstract:
Incidence is an important epidemiological concept most suitably studied using an incident cohort study. However, data are often collected from the more feasible prevalent cohort study, whereby diseased individuals are recruited through a cross-sectional survey and followed in time. In the absence of temporal trends in survival, we derive an efficient nonparametric estimator of the cumulative incidence based on such data and study its asymptotic properties. Arbitrary calendar time variations in disease incidence are allowed. Age-specific incidence and adjustments for both stratified sampling and temporal variations in survival are also discussed. Simulation results are presented and data from the Canadian Study of Health and Aging are analysed to infer the incidence of dementia in the Canadian elderly population. Copyright 2012, Oxford University Press.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass017 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:3:p:599-613
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().