EconPapers    
Economics at your fingertips  
 

Modelling covariance structure in bivariate marginal models for longitudinal data

Jing Xu and Gilbert Mackenzie

Biometrika, 2012, vol. 99, issue 3, 649-662

Abstract: It can be more challenging to efficiently model the covariance matrices for multivariate longitudinal data than for the univariate case, due to the correlations arising between multiple responses. The positive-definiteness constraint and the high dimensionality are further obstacles in covariance modelling. In this paper, we develop a data-based method by which the parameters in the covariance matrices are replaced by unconstrained and interpretable parameters with reduced dimensions. The maximum likelihood estimators for the mean and covariance parameters are shown to be consistent and asymptotically normally distributed. Simulations and real data analysis show that the new approach performs very well even when modelling bivariate nonstationary dependence structures. Copyright 2012, Oxford University Press.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass031 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:3:p:649-662

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:649-662