On the robustness of the adaptive lasso to model misspecification
W. Lu,
Y. Goldberg and
J. P. Fine
Biometrika, 2012, vol. 99, issue 3, 717-731
Abstract:
Penalization methods have been shown to yield both consistent variable selection and oracle parameter estimation under correct model specification. In this article, we study such methods under model misspecification, where the assumed form of the regression function is incorrect, including generalized linear models for uncensored outcomes and the proportional hazards model for censored responses. Estimation with the adaptive least absolute shrinkage and selection operator, lasso, penalty is proven to achieve sparse estimation of regression coefficients under misspecification. The resulting estimators are selection consistent, asymptotically normal and oracle, where the selection is based on the limiting values of the parameter estimators obtained using the misspecified model without penalization. We further derive conditions under which the penalized estimators from the misspecified model may yield selection consistency under the true model. The robustness is explored numerically via simulation and an application to the Wisconsin Epidemiological Study of Diabetic Retinopathy. Copyright 2012, Oxford University Press.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass027 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:3:p:717-731
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().