EconPapers    
Economics at your fingertips  
 

Quadratic inference function approach to merging longitudinal studies: validation and joint estimation

Fei Wang, Lu Wang and Peter X.-K. Song

Biometrika, 2012, vol. 99, issue 3, 755-762

Abstract: Merging data from multiple studies has been widely adopted in biomedical research. In this paper, we consider two major issues related to merging longitudinal datasets. We first develop a rigorous hypothesis testing procedure to assess the validity of data merging, and then propose a flexible joint estimation procedure that enables us to analyse merged data and to account for different within-subject correlations and follow-up schedules in different studies. We establish large sample properties for the proposed procedures. We compare our method with meta analysis and generalized estimating equations and show that our test provides robust control of Type I error against both misspecification of working correlation structures and heterogeneous dispersion parameters. Our joint estimating procedure leads to an improvement in estimation efficiency on all regression coefficients after data merging is validated. Copyright 2012, Oxford University Press.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass021 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:3:p:755-762

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:755-762