EconPapers    
Economics at your fingertips  
 

Classification based on a permanental process with cyclic approximation

J. Yang, K. Miescke and P. McCullagh

Biometrika, 2012, vol. 99, issue 4, 775-786

Abstract: We introduce a doubly stochastic marked point process model for supervised classification problems. Regardless of the number of classes or the dimension of the feature space, the model requires only 2--3 parameters for the covariance function. The classification criterion involves a permanental ratio for which an approximation using a polynomial-time cyclic expansion is proposed. The approximation is effective even if the feature region occupied by one class is a patchwork interlaced with regions occupied by other classes. An application to DNA microarray analysis indicates that the cyclic approximation is effective even for high-dimensional data. It can employ feature variables in an efficient way to reduce the prediction error significantly. This is critical when the true classification relies on nonreducible high-dimensional features. Copyright 2012, Oxford University Press.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass047 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:4:p:775-786

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:99:y:2012:i:4:p:775-786