Compatible weighted proper scoring rules
P. G. M. Forbes
Biometrika, 2012, vol. 99, issue 4, 989-994
Abstract:
Many proper scoring rules such as the Brier and log scoring rules implicitly reward a probability forecaster relative to a uniform baseline distribution. Recent work has motivated weighted proper scoring rules, which have an additional baseline parameter. To date two families of weighted proper scoring rules have been introduced, the weighted power and pseudospherical scoring families. These families are compatible with the log scoring rule: when the baseline maximizes the log scoring rule over some set of distributions, the baseline also maximizes the weighted power and pseudospherical scoring rules over the same set. We characterize all weighted proper scoring families and prove a general property: every proper scoring rule is compatible with some weighted scoring family, and every weighted scoring family is compatible with some proper scoring rule. Copyright 2012, Oxford University Press.
Date: 2012
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass046 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:4:p:989-994
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().