Proportional mean residual life model for right-censored length-biased data
Kwun Chuen Gary Chan,
Ying Qing Chen and
Chong-Zhi Di
Biometrika, 2012, vol. 99, issue 4, 995-1000
Abstract:
To study disease association with risk factors in epidemiologic studies, cross-sectional sampling is often more focused and less costly for recruiting study subjects who have already experienced initiating events. For time-to-event outcome, however, such a sampling strategy may be length biased. Coupled with censoring, analysis of length-biased data can be quite challenging, due to induced informative censoring in which the survival time and censoring time are correlated through a common backward recurrence time. We propose to use the proportional mean residual life model of Oakes & Dasu (Biometrika 77, 409--10, 1990) for analysis of censored length-biased survival data. Several nonstandard data structures, including censoring of onset time and cross-sectional data without follow-up, can also be handled by the proposed methodology. Copyright 2012, Oxford University Press.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/ass049 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:99:y:2012:i:4:p:995-1000
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().