Fragility of identification in panel binary response models
Giovanni Forchini and
Bin Jiang
The Econometrics Journal, 2019, vol. 22, issue 3, 282-291
Abstract:
SummaryThe present paper considers a linear binary response model for panel data with random effects that differ across individuals but are constant over time, and it investigates the roles of the various assumptions that are used to establish conditions for identification. The paper also shows that even for this simple model, it is always possible—including in the logistic case—to find a distribution of the random effects given the exogenous variables, such that the slopes' parameters are arbitrarily different, but the joint distributions of the binary response variables are arbitrarily close.
Keywords: Panel data; logit model; identification (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/ectj/utz011 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:emjrnl:v:22:y:2019:i:3:p:282-291.
Access Statistics for this article
The Econometrics Journal is currently edited by Jaap Abbring
More articles in The Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Oxford University Press ().